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In this article the equation of steady heat exchange in a laminar flow of 

a viscous fluid is considered. It is assumed that the heat conduction 

coefficient is constant and that the problem regarding the determination 

of the velocity field of the flows considered has been solved. 

The stationary temperature distribution in a laminar flow is governed 

by the equation [ I] 

(1) 

where vX and v 
Y 

are the components of the velocity vector. If a body with 

a boundary S is placed in a flow of infinite extent, then the boundary 

conditions for equation (1) will be 

e7’ .1- 0, a21 = .idn 7 on S, lirn 7’ = consl, $-j_ * 1y- --t &a3 

Obviously, the last constant may always be made zero. Further, in the 

following we shall consider only Dirichlet’s problem, that is /i = 0. 

We introduce the flow function VJ. Equation (1) may then be written in 

the form 

Equation (2) remains of the same form during the passage to any other 
arbitrary isothermal system of coordinates. Let us pass, for example, to 

the system of coordinates 6, I/J, where C/J and I$ are the real and imaginary 

parts of the complex ideal flow potential in the same region. In the new 

system we obtain the equation 

(3) 
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and the region Q with boundary S will pass over into a plane Q’ with a 

cut S’ along the +axis, on which the boundary conditions should be 

satisfied. 

We introduce the function x = 

1 aT --- 
a a9 

$- y and rewrite equation (3) as 

AT =-D (TV x) 
= D(cp, 4~) 

(4) 

We consider now the following differential equation, which governs the 

problem of heat exchange in ideal fluid flow 

;?j?+T=O (5) 

Several authors [ 2-41 studied this problem. 

The middle of the slit S’ shall be placed at the origin of coordinates 

and we introduce a system of elliptic coordinates 4, 7 in accordance with 
formulas I$ = ch 5. cos T], $ = sh t sin 7. 

The slit 7” coincides thereby with the coordinate line 4 = 0. This 

makes it possible to solve equation (5) by the method of variables separ- 

able. Having the general solution of equation (5) and a particular solu- 

tion, given by the function 

exp C - & (‘p - 1Po)po [ &- I/(9 - ‘PO?+ ($ - +o)2] 

we can construct Green’s function for equation (5) of Dirichlet’s problem 

in the plane Q’ with a slit S’* In the notation of [ 51, the required 

function may be written as 

where 

g (4, 7j) = exp - & (9 -TO)] $J [urn se (?I + P, ce, (7/J] Fe& (5) 
m-o 

a, = ’ \ Ko(&jIr_osf+,(q)d~, ~2-=((P---~O)2~-(J)-~O)’ 
ZnPeK, (0) 

’ pm = 2nFeK, (0) r^ Ko t&j /E_o %, (‘I) d? 

With the aid of this function, equation (5) may be replaced by the 
integral equation 

(6) 

where F(&, .I&) is the temperature field in ideal fluid flow. 
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The functions ax/a+ and ax/a+, which are the differences of flow 

velocities of viscous and ideal fluids, may be determined for continuous 

flows with large Reynolds numbers using the boundary layer theory. In 

accordance with this theory the indicated quantities will be equal to 

zero outside a certain parabola Q,, whose equation is 

I/(cp + c)~ + Q” - (‘p + c)2=b R-72 , 

where R is Reynolds number and the parameter c is chosen in such a manner, 

that the slit 5” is located in Q,. 

Further, in the parabola indicated one can put 

Moreover, from the condition G = 0 at !/I = 0 it follows, that GmR-1/2 

in Qi. Obvious1 y, the derivative aG/$b in Q, will also be of the same 
order. All of this makes it possible to indicate the order of the root 

of the integral equation (6) 

ax ac aX aG _ R-‘1’ 
----7-- 
a9 w all, e 

Equation (6) will be solved in the space of bounded continuous func- 

tions on the plane C[ - m, - I. The norm of the root of equation (6) will 

be determined by 

The variables +, I,!/ and s,, l//o will be substituted by 

With the scale chosen the function G will not depend on the parameter 

0. 

Obviously, the estimates (7) retain their sense also for a new scale. 

Using the representation of Green’s function written earlier, as well 

as the estimates indicated, it is possible to obtain the inequality 

I] K 116 < A4 R-‘/t 

where M is some constant, which does not depend on a and R. 

This inequality permits to establish the theorem: equation (61, which 

governs the problem of heat exchange in a flow of a viscous fluid for 

sufficiently large Reynolds numbers, possesses a unique solution in the 
space C[ - m, ml. This solution may be found by the method of successive 
approximations. 
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The free term F(q$,, $oir,,, giving the solution of the problem of heat 

exchange in a flow of an ideal fluid, may differ but little from the 

solution of the problem of the viscous fluid in the sense of the metric 

C[-m,= 1, if the number R is sufficiently large. 

From these results it becomes clear, why the attempt of King [3] to 

solve the problem of the thermoanemometer using an ideal fluid model, was 

not successful. 

BISLIOGRAPHY 

1. Targ, S. M., Osnovnve tadachi reorii lamina~nyk~ potokou <The Basic 

Problems of the Theory of Laainar FIotos). GTTI, 1951. 

2. Roussinesq, M. I., Calcul du pouvoir refroidissant des courants 

fluides. J. Math. Vol. 1, 1905. 

3. King, L. V., On the 7?onvection of heat from small cylinders in a stream 

of fluid. Phil. Trans. A 214, 1914. 

4. Sretenskii, L.N., 0 nagrevanii potoka zhidkosti tverdymi stenkami 

(On the heating of fluid flow by rigid wslls). PMM Vol. 2, No. 2, 

1935. 

5. MacLachlan. Theory and Application of ~othiea Functions. Izd. inostr. 

1 it., Moscow, 1935. 

Translated by G.A. 


